Solve the Trigonometric Equation, sin(πcos θ) = cos(πsin θ)

If the trigonometric equation, sin(πcos θ) = cos(πsin θ), then prove that cos (θ ± π/4) = 1/(2√2)

Solution: Solving the trigonometric equation

Here we have two different cases

Case 1

sin(πcos θ) = cos(πsin θ)

⇒ sin(πcos θ) = sin(π/2 – πsin θ)

⇒ πcos θ = π/2 – πsin θ

so, cos θ = 1/2 – sin θ

thus, cos θ + sin θ = 1/2

Multiply with 1/2 then

(cos θ) × (1/2) + (sin θ) × (1/2) = (1/2) × (1/2)

⇒ cos θ × cos (π/4) + sin θ × sin (π/4) = 1/(22)

cos (θ – π/4) = 1/(2√2)

Case 2

sin(πcos θ) = cos(πsin θ)

⇒ sin(πcos θ) = sin(π/2 + πsin θ)

⇒ πcos θ = π/2 + πsin θ

so, cos θ = 1/2 + sin θ

thus, cos θ – sin θ = 1/2

Multiply with 1/2 then

(cos θ) × (1/2) – (sin θ) × (1/2) = (1/2) × (1/2)

⇒ cos θ × cos (π/4) – sin θ × sin (π/4) = 1/(22)

cos (θ + π/4) = 1/(2√2)

So cos (θ ± π/4) = 1/(2√2)

Leave a Reply